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The purpose of real analysis is to provide a rigorous foundation for the

tehniques of alulus, whih are based on the notion of limit. The exerises

assume familiarity with the basi ideas of onvergene of a sequene of real

numbers and the de�nition of ontinuity of a funtion in terms of the standard

symbols ε > 0 and δ > 0 along with the de�nition of derivative. We also assume

the Fundamental theorem of Calulus and take for granted the integrability of

any ontinuous funtion. The known nature of the real numbers is assumed,

inluding the existene of the greatest lower bound of a set bounded below

and similarly the least upper bound of a set bounded above. Set 1 establishes

the elementary properties of onvergent sequenes of real numbers. Set 2 is

onerned with ertain limits that are espeially important, partiularly those

involving the number e. Set 3 introdues results and examples on ontinuity

of a funtion. Throughout we will work mainly with one variable mappings

although we oasionally expand to matters of several variables. Sets 4 and 5

onern series. We introdue and work with the standard tests for onvergene

and examples inlude the binomial series for non-integral powers. We draw on

all this knowledge in the seond part of the module.

In Set 6 we study ontinuous funtions on losed intervals (the prototype

of so-alled ompat sets, whih we shall meet in Level 3 modules in a more

general setting). We prove the Intermediate value and Extreme value theorems

for ontinuous funtions on a losed interval and illustrate the ideas involved

with relevant examples. Set 7 introdues the onept of uniform ontinuity for

individual and for sequenes of funtions. This ondition is key in justifying

many of the tehniques of alulus that involve the interhange of limiting op-

erations, suh as term-by-term di�erentiation and integration of series. In Set

8 we study power series where the uniform onvergene of the series within its

radius of onvergene is a ruial property in alulations involving power series

representation of funtions of interest. In partiular the Weierstrass M-test is a

tool we �rst meet here. Set 9 introdues and proves another fundamental result

of alulus, that being the Mean value theorem in various forms and we use the

MVT to prove theorems often used in alulus inluding Equality of mixed par-

tial derivates. Set 9 and all of Set 10 are about Taylor series and we introdue

a study of the Remainder term both in the Lagrange form, based on the Mean

value theorem, and the Integral form. We lose with some pratial alulations

inluding a brief visit into the realm of Taylor series of several variables.
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Solutions and Comments for the Problems

Problem Set 1

1. Suppose to the ontrary that M < A. Put ε = A−M > 0. Sine an → A
there exists N suh that for all n ≥ N ,

|A− an| < ε

⇒ A− an ≤ |A− an| < A−M

⇒ an > M,

a ontradition, and so limn→∞ an ≤M , the given upper bound of the sequene.

2. Given ε > 0 taken N1, N2 suh that |an − A| < ε for all n ≥ N1 and

|bn − B| < ε for all n ≥ N2. Put N = max{N1, N2} . Then for all n ≥ N we

have by the triangle inequality:

|λan + µbn − (λA + µB)| = |λ(an −A) + µ(bn −B)|

≤ |λ||an −A|+ |µ||bn −B| ≤ |λ|ε+ |µ|ε = ε(|λ|+ |µ|)
and sine |λ|+ |µ| is a �xed onstant, it follows that (λan + µbn) → λA+ µB.

Comment We an end the argument with ε rather than a multiple of ε if we
wish by taking |an − A| < ε

|λ|+|µ| et. (while also dealing with the trivial ase

where λ = µ = 0). It is a matter of taste whether or not to introdue suh a

ontrivane in order to satisfy the formal de�nition of onvergene.

3. (a) Let A be the limit of the sequene (an)n≥1 and put ε = 1. Then there

exists N suh that for all n ≥ N we have |an −A| < 1. Then for any n ≥ N we

have

|an| = |an −A+A| ≤ |an −A|+ |A| ≤ |A|+ 1 (1)

Next let B = max{|an| : n ≤ N − 1}. Then for all n ≥ 1 we have

|an| ≤M =: max{B, 1 + |A|},

and so (an)n≥1 is bounded.

Comment The onlusion may be written as −M ≤ an ≤ M so that the

sequene itself has both a lower and an upper bound.

(b) Any onvergent sequene is bounded above and below by 3(a). Con-

versely, suppose that (an)n≥1 is a monotoni inreasing sequene that is bounded

above. (The argument in the dereasing ase is the same exept for the dire-

tion of the inequalities involved.) Sine (an)n≥1 is bounded above, the sequene

has a least upper bound (also known as the supremum) A and we laim that
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an → A. Too see this, let ε > 0 be given. Then there exists N suh that

A − ε < aN ≤ A for if there were no suh N , then A − ε would be an upper

bound of the sequene that was less than the least upper bound, whih is a

ontradition. Then, sine (an)n≥1 is inreasing in n, it follows that for any
n ≥ N we have A − ε ≤ aN ≤ an ≤ A and in partiular |A − an| < ε for all

n ≥ N. Therefore it follows that an → A, as required.
() Let ε > 0 be given and take N suh that for all n ≥ N we have |an−A| <

ε. Then by the Triangle inequality we have

||an| − |A|| ≤ |an −A| ≤ ε,

whene it follows that |an| → |A|.
(d) The onverse is false: for example let an = (−1)n. Then |an| = 1 so that

(|an|)n≥1 → 1 but the sequene (an)n≥1 has no limit at all.

4. By Question 3 there exists a ommon positive upper bound M for the

onvergent sequenes (an)n≥1 and (bn)n≥1. Similarly, for any given ε > 0, there
is a ommon index N suh that for all n ≥ N we have |an − A| < ε and

|bn −B| < ε. Then

|anbn −AB| = |anbn −Abn +Abn −AB| ≤ |(an −A)bn +A(bn −B)|

≤ |an −A||bn|+ |A||bn −B| ≤ εM + |A|ε = ε(M + |A|),
whih is a onstant multiple of ε and so we onlude that anbn → AB.

5. It is enough to prove this in the ase where an is the onstant sequene

1, for given this and Question 3 we have

an
bn

= an · 1

bn
→ A · 1

B
=
A

B
.

Now

| 1
bn

− 1

B
| = |B − bn

Bbn
| (2)

Choose N suh that for all n ≥ N , |bn − B| < |B|ε and |bn| ≥ 1
2 |B| (so that

1
|bn| ≤

2
|B| ). To prove that the latter is possible �rst we note by Question 3()

that |bn| → |B|. Take ε = |B|
2 > 0. Then we may take N suh that for all

n ≥ N , ||bn| − |B|| < ε so that

−ε < |bn| − |B| < ε

⇒ |bn| > |B| − |B|
2

=
|B|
2
.

Then for all n ≥ N we have by (4) that

| 1
bn

− 1

B
| ≤ |B|ε

|B||bn|
=

ε

|bn|
≤ 2ε

|B| ,
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from whih follows that

1
bn

→ 1
B , as required.

Comment Even without the ondition that bn 6= 0 for all n ≥ 1 we have

that the onvergene of the tail of the sequene

an

bn
to the limit

A
B still holds as

bn → B 6= 0 implies that only �nitely many of the bn an equal 0, and we may

simply onsider the behaviour of the sequene after the point where there are

no further zero values in the bn .

6. Let ε > 0 and take N suh that for all n ≥ N , |an − A| < ε. For

the sequene (ani
)i≥1 take j suh that nj ≥ N . Then for any i ≥ j we have

ni ≥ nj ≥ N so that |ani
−A| < ε and so it follows that ani

→ A.

7. Take N suh that for all n ≥ N , |an − l| ≤ ε
2 . Then for any m,n ≥ N we

obtain the required inequality as follows:

|am − an| = |am − l − (an − l)| ≤ |am − l|+ |an − l| ≤ ε

2
+
ε

2
= ε.

8. We have that some interval I0 = [−M,M ] ontains all members an of

our sequene. It follows that at least one of the intervals [−M, 0] and [0,M ]
ontains in�nitely many members of the sequene. Choose suh an interval I1
and repeat the argument, splitting I1 into two losed intervals of equal length

with ommon endpoint. In this way we de�ne a nested sequene of intervals

I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·

with |In| = M
2n−1 . We then form a subsequene (ani

)i≥0 by hoosing ani
∈ Ii.

Now let ε > 0 and take i ∈ Z+
suh that

M
2i−1 < ε. Take any j, k ≥ i. Then

sine anj
, ank

∈ Ii we have

|anj
− ank

| ≤ M

2i−1
< ε,

whih shows that the subsequene (ani
)i≥0 of (an)n≥0 is Cauhy onvergent.

Hene, by the ompleteness of R, it follows that (ani
)i≥0 onverges, as required

to omplete the proof.

Comment We shall take the results of the previous questions, and simple

onsequenes thereof, for granted in future proofs without expliit referene.

Another point to note is that the onvergene or otherwise of a sequene is

unaltered if we adjoin or omit a �nite number of terms.

9. Let ε > 0. Take N suh that for all n ≥ N , |an − A| < ε
2 and let M be

an upper bound for (|an|)n≥1. Then for any n ≥ N suh that

MN
n < ε

2 we have

| 1
n

n
∑

k=1

ak −A| = | 1
n

N
∑

k=1

ak +
1

n

n
∑

k=N+1

ak −A|
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≤ 1

n
|

N
∑

k=1

ak|+
1

n
|
(

n
∑

k=N+1

ak −A
)

|

≤ MN

n
+

1

n
|

n
∑

k=N+1

(ak −A)|

≤ MN

n
+

1

n

n
∑

k=N+1

|ak −A|

≤ ε

2
+
n(ε/2)

n
= ε.

10. We have

Sn =
1

⌊n
2 ⌋

⌊n
2 ⌋

∑

k=1

k(n− k)

for n = 2m we have, using standard formulas for the sums of powers, that

⇒ Sn

n2
=

1

4m3

(2m2(m+ 1)

2
− m(m+ 1)(2m+ 1)

6
)

=
1

24m2
(6m(m+ 1)− (2m+ 1)(m+ 1)) =

1

24m2
(4m− 1)(m+ 1)

=
1

24
(4− 1

m
)(1 +

1

m
) → 4

24
=

1

6
.

For n = 2m+ 1 we have

Sn

n2
=

1

m(2m+ 1)2
( (2m+ 1)m(m+ 1)

2
− m(m+ 1)(2m+ 1)

6

)

=
1

6(2m+ 1)2
(2(2m+ 1)(m+ 1)) =

1

3
(
m+ 1

2m+ 1
) =

1

3
(
1 + 1

m

2 + 1
m

)

→ 1

3
· 1
2
=

1

6
.

Problem Set 2

1.

e(n) = (
1

n
+ 1)n =

n
∑

k=0

(

n

k

)

1

nk
=

n
∑

k=0

n(n− 1) · · · (n− k + 1)

k!nk
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and the term indexed by k is given by

t(k) =
1

k!
(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
). (3)

We observe that tk > 0 and is inreasing in n as this is true of eah of the

fators. Also e(n+1) has one more term than does e(n), whene it follows that
2 ≤ e(n) < e(n+ 1).

2(a) Replaing eah braketed term of t(k) by 1 we see that

e(n) <

n
∑

k=0

1

k!
(4)

(b) Then observe that 2k−1 < k! for all k ≥ 1 so that

1
k! <

1
2k−1 ; we obtain:

e(n) < 1 + 1 +
1

22
+

1

23
+ · · ·+ 1

2n−1
= 1 +

1− (1/2)n

1− (1/2)
= 1 +

2n − 1

2n−1

= 1 + 2− 1

2n−1
< 3.

3. The MLaurin series for ex is given by

ex =

∞
∑

k=0

(ex)(n)(0)

k!
xk =

∞
∑

k=0

xk

k!

and putting x = 1 then gives:

e =

∞
∑

k=0

1

k!
(5)

4. If m > n we have

e(m) > 1+1+
1

2!
(1− 1

m
)+

1

3!
(1− 1

m
)(1− 2

m
)+· · ·+ 1

n!
(1− 1

m
) · · · (1−n− 1

m
) (6)

as e(m) is omprised of the sum on the right hand side of (8) together with more

positive terms (see (5) above). Letting m→ ∞ then gives that for all n ≥ 0

e = lim
m→∞

e(m) ≥ s(n) =:

n
∑

k=0

1

k!
(7)

On the other hand by (6) we have e(n) ≤ sn. Hene we have e(n) ≤ sn ≤ e;
letting n → ∞ we then have e = limn→∞ sn. Therefore we have equality

throughout and arrive at two equivalent de�nitions for the number e:

e = lim
n→∞

(1 +
1

n
)n =

∞
∑

k=0

1

k!
.
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Comment The expression e(n) was �rst introdued in Bernoulli's ompound

interest problem, whih asks for the limiting amount of interest gained when

interest arues ontinuously. Looked at this way, it is lear that (1 + 1
n )

n
is

inreasing in n as this expression represents the interest aruing when interest

is paid at n equally spaed intervals per annum (and interest rate is 100%) and

interest on interest will arue earlier if interest is paid more often.

5(a) Let l(x) = logb(x) (x > 0). Then for any a > 0 we have l(xa ) =
l(x)− l(a). Di�erentiating both sides by gives:

l′(xa )

a
= l′(x)

putting x = a then gives

l′(a) =
l′(1)

a
;

or using the symbol x instead of a:

(logb(x))
′ =

λ

x
, λ = (logb(x))

′|x=1.

(b) Hene we have

λ = lim
h→0

logb(1 + h)− logb(1)

h
= lim

h→0
logb(1 + h)1/h = logb( lim

h→0
(1 + h)

1
h ),

where we have assumed that the limit and the taking of log may be interhanged

(whih is valid beause of the ontinuity of the log funtion). Putting n = h−1

we get

lim
h→0

(1 + h)
1
h = lim

n→∞
(1 +

1

n
)n = e.

Therefore λ = logb e = 1 if and only if b = e. This shows in partiular that

(lnx)′ = x−1
.

6. For n = 2 we have (1+ h)2 = 1+2h+ h2 > 1+ 2h as h 6= 0. Suppose the
laim holds for some n ≥ 2 and onsider

(1+h)n+1 = (1+h)n(1+h) > (1+nh)(1+h) = 1+(n+1)h+h2 > 1+(n+1)h,

and so the indution ontinues, thus ompleting the proof.

7. Sine p > 1, we have p1/n > 1 so that an = 1 + hn for some hn > 0.
Hene by Question 6,

p = (1 + hn)
n > 1 + nhn

⇒ 0 < hn <
p− 1

n
→ 0

⇒ an → 1 + 0 = 1.

7



Otherwise for 0 < p < 1 we have that 0 < p
1
n < 1 and so p

1
n = 1− rn for some

0 < rn < 1. We seek to write this as p
1
n = 1

1+hn
so we solve

1

1 + hn
= 1− rn

⇔ hn =
1

1− rn
− 1 =

rn
1− rn

and sine 0 < rn < 1 it follows that 0 < hn, as we require. Sine (1 + hn)
n >

1 + nhn we get that (1 + hn)
−n < (1 + nhn)

−1
and so

p =
1

(1 + hn)n
<

1

1 + nhn

⇒ 1 + nhn <
1

p

⇒ 0 < hn <

1
p − 1

n
→ 0.

Therefore in the ase where 0 < p < 1 it also follows that an = 1
1+hn

→ 1.

8. Note that bnn = (n
1
2n )n =

√
n so that

√
n = (1 + hn)

n > 1 + nhn

⇒ hn <

√
n− 1

n
<

√
n

n
=

1√
n
.

9. We now have

1 ≤ an = b2n = 1 + 2hn + h2n ≤ 1 +
2√
n
+

1

n
→ 1

and so

an = n
√
n→ 1, as n→ ∞.

10. Put an = n
αn so that

√
an =

√
n

(
√
α)n

. Sine α > 1, so is

√
α and so we

may write

√
α = 1 + h for some h > 0. Then

√
αn = (1 + h)n > 1 + nh, so that

√
an =

√
n

(1 + h)n
≤

√
n

1 + nh
≤

√
n

nh
=

1

h
√
n

∴ 0 < an =:
n

αn
≤ 1

nh2
→ 0.
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Problem Set 3

1. Let ε > 0 and take δ > 0 suh that |x−l| < δ implies that |f(x)−f(l)| < ε,
whih is possible as f(x) is ontinuous at x = l. Take N suh that for all n ≥ N ,

|an − l| < δ. Then |f(an)− f(l)| < ε, and therefore (f(an))n≥1 → f(l).
Comment Note this is saying that limn→∞ f(an) = f(limn→∞ an), or in

words, the ations of taking the limit and ating a ontinuous funtion on a

onvergent sequene may be interhanged.

2. For any a ∈ R inluding a = 0 we may also put δ = ε > 0. For a = 0
if |x − a| = |x| ≤ ε then ||x| − |0|| = |x| ≤ ε and so |x| is ontinuous at

x = 0. For a 6= 0 assume without loss that ε is hosen su�iently small so that

|x − a| < ε implies that x and a have the same sign. Then for a > 0 we have

||x|−|a|| = |x−a| < ε while for a < 0 we have ||x|−|a|| = |−x+a| = |x−a| < ε.
In either ase, this serves to show that |x| is ontinuous for all a ∈ R.

3. Sine g(x) is ontinuous at x = f(a) it follows that for any ε > 0 there

exists δ1 > 0 suh that |f(x) − f(a)| < δ1 implies that |g(f(x) − gf(a)| < ε.
Sine f(x) is ontinuous at x = a if follows that there exists δ > 0 suh that

|x − a| < δ implies that |f(x) − f(a)| < δ1. Therefore for any x suh that

|x− a| ≤ δ we obtain

|f(x)− f(a)| < δ1 ⇒ |g(f(x)) − g(f(a))| < ε,

thus proving that g(f(x)) is ontinuous at x = a.
By Question 2 we know that |x| de�nes a ontinuous funtion so that by what

we have just proved (putting g(x) = |x|) we have that if f(x) is ontinuous then
so is |f(x)|.

To see that the onverse is false as we may take f(x) to be the funtion that

takes the value 1 if x ∈ Q and −1 if x 6∈ Q. Then |f(x)| ≡ 1, the onstant

funtion 1, whih is learly ontinuous, yet f(x) is not a ontinuous funtion.

Indeed f(x) is disontinuous at every point as eah point has arbitrarily small

neighbourhoods where the funtion values of points within the neighbourhood

di�er by 2.

4. Given ε > 0, let δ1, δ2 > 0 be suh that |x − a| < δ1 implies that

|f(x) − f(a)| < ε and |x − a| < δ1 implies that |g(x) − g(a)| < ε. Put δ =
min{δ1, δ2}. Then |x− a| < δ implies that

|h(x)− h(a)| = |λ(f(x)− f(a)) + µ(g(x) − g(a)|

≤ |λ||f(x) − f(a)|+ |µ||g(x)− g(a)| ≤ (|λ|+ |µ|)ε
and sine λ and µ do not depend on ε, it follows that h(x) = λf(x) + µg(x) is
ontinuous at x = a.
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5. Let a ∈ R. Then

sin(a+ h)− sin a = sina cosh− cos a sinh− sin a = sin a(cosh− 1)− cos a sinh.

Given that limh→0 cosh = 1 and limh→0 sinx = 0 we obtain:

lim
h→0

(sin(a+h)−sina) = sin a lim
h→0

(cosh−1)−cosa( lim
h→0

sinh) = sina(1−1)−cosa(0) = 0.

6. It su�es to prove the ase where p(n) = nk
for some k ≥ 1, with the

k = 1 ase being dealt with in Question 10 Set 2. We proeed by indution on

k. Let k ≥ 2 and let b =
√
a > 1. Then by indution and the k = 1 ase we

obtain:

lim
n→∞

nk

an
= lim

n→∞
nk−1

bn
· n
bn

= lim
n→∞

nk−1

bn
· lim
n→∞

n

bn
= 0 · 0 = 0.

7(a) We are given that

lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

De�ne the funtion ε(h) by the equation

ε(h) =
f(a+ h)− f(a)

h
− f ′(a)

⇒ lim
h→0

ε(h) = f ′(a)− f ′(a) = 0;

∴ f(a+ h)− f(a) = hf ′(a) + hε(h)

⇒ lim
h→0

(f(a+ h)− f(a)) = lim
h→0

hf ′(a) + lim
h→0

hε(h) = 0 + 0 = 0.

Therefore f(a+ h) → f(a) as h→ 0, whih is to say that f(x) is ontinuous at
x = a.

(b)

f ′(x) = lim
h↓0

f(x+ h)− f(x)

h
= lim

h↑0

f(x− h)− f(x)

−h = − lim
h↑0

f(x− h)− f(x)

h
and

f ′(x) = lim
h↑0

f(x+ h)− f(x)

h
= lim

h↓0

f(x− h)− f(x)

−h = − lim
h↑0

f(x− h)− f(x)

h
.

Sine a limit exists if and only if eah of the orresponding two-sided limits exist

and agree, it follows that we may also de�ne

f ′(x) = − lim
h→0

f(x− h)− f(x)

h

and vie-versa.
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() Suppose that f(x) is even (and di�erentiable). Then, making use of (b),

we have

f ′(−x) = lim
h→0

f(−x+ h)− f(−x)
h

= lim
h→0

f(x− h)− f(x)

h
= −f ′(x)

so that f ′(x) is odd. On the other hand if f(x) were odd then

f ′(−x) = lim
h→0

f(−x+ h)− f(−x)
h

= lim
h→0

−f(x− h) + f(x)

h
= − lim

h→0

f(x− h)− f(x)

h
= f ′(x),

thus showing that f ′(x) is even.

8. Using polar oordinates we have x2 + y2 = r2 and x3 = r3 cos3 θ. The

required limit then takes the form:

lim
r→0

r3 cos3 θ

r2
= lim

r→0
r cos3 θ = 0

as | cos3 θ| ≤ 1 independently of the value of θ. Hene if we de�ne f(0, 0) = 0
the funtion f(x, y) is ontinuous throughout all of the domain R2

.

9. Putting y = mx the limit takes the form:

lim
x→0

x2 −m2x2

x2 +m2x2
= lim

x→0

x2(1−m2)

x2(1 +m2)
=

1−m2

1 +m2
;

sine the limit is not onstant but rather its value depends on the gradient of

the line of approah to the origin, it follows that no single limiting value may

be assigned to f(0, 0) that makes the funtion ontinuous at the origin.

10(a) Again putting y = mx gives the limit:

lim
x→0

mx3

x4 +m2x2
= lim

x→0

mx

x2 +m2
;

if m 6= 0, this limit is

0
m2 = 0. If m = 0 (i.e. we approah along the line y = 0)

we also get limx→0
0
x4 = 0.

(b) However if we approah the origin along the urve y = x2, the limit

exists but takes on a di�erent value:

lim
x→0

x4

x4 + x4
= lim

x→0

1

2
=

1

2
.

11



Problem Set 4

1. Let sn =
∑n

k=1 ak. We have that sn → S, where S is the sum of the

series. The sequene (sn)n≥1 is Cauhy onvergent and in partiular for any

ε > 0 there exists N suh that for all n ≥ N , |sn+1 − sn| < ε, whih is to say

|an+1| < ε for all n ≥ N . Sine ε was arbitrary it follows that an → 0.

2. Suppose that Σ onverges so that sn → S say. Let us write tn,m for

∑k=n+m
k=n+1 an = sn+m − sn. Then for any ε > 0 there exists N suh that for all

n ≥ N , |sn − s| < ε
2 . Hene for all m ≥ 0 we have

|sn+m − s| = |tn,m − s+ sn)| <
ε

2
.

⇒ −ε
2
< tn−m + (sn − s) <

ε

2

⇒ −ε < tn,m < ε⇔ |tn,m| < ε ∀m ≥ 0

⇒ lim
m→∞

|tn,m| =: tn = |
∞
∑

k=n+1

an| ≤ ε.

Sine ε > 0 was arbitrary it follows that |tn| → 0 as n→ ∞, so the same is true

of tn, i.e.

lim
n→∞

∞
∑

k=n+1

an = 0. (8)

Conversely suppose that (8) is true. Let ε > 0 and take N suh that for all

n ≥ N, |tn| ≤ ε
2 . Then for any m ≥ 0 we have

−ε
2
<

∞
∑

k=n+1

an = sn+m − sn +

∞
∑

k=n+m+1

an <
ε

2

−ε < sn+m − sn < ε,

and so for all n ≥ N and m ≥ 0, |sn+m − sn| < ε, and sine ε was arbitrary it

follows that

∑∞
k=0 an onverges.

3. We have that

∑∞
n=1 |an| onverges so given any ε > 0 there exists N

suh that for all n ≥ N , and m ≥ 1,
∑n+m

k=n+1 |ak| ≤ ε. Hene, by the Triangle

inequality we obtain:

|
n+m
∑

k=n+1

ak| ≤
n+m
∑

k=n+1

|ak| ≤ ε

⇔ |sn+m − sn| ≤ ε

and so

∑∞
k=1 an onverges.

12



4. We show indutively that the series (s2n)n≥0 and (s2n+1)n≥0 are respe-

tively monotonially dereasing and monotonially inreasing. Suppose that we

have s0 ≥ s2 ≥ · · · ≥ s2n for some n ≥ 0 (the n = 0 ase being vauously true).

Then

s2(n+1) = s2n+2 = s2n + (a2n+2 − a2n+1)

and by hypothesis the braketed term is non-positive (as a2n+2 ≤ a2n+1) and

so s2n ≥ s2(n+1) and the indution ontinues. Similarly suppose we have s1 ≤
s3 ≤ · · · ≤ s2n+1 for some n ≥ 0, the base ase again being lear. Then

s2(n+1)+1 = s2n+3 = s2n+1 + (a2n+2 − a2n+1) ≥ s2n+1,

and the indution ontinues; therefore (a2n+1)n≥0 is dereasing. The laim is

thus established.

Next we observe that s2n ≥ s2m+1 for any n,m ≥ 0. To see this, suppose

to the ontrary that for some n,m we have s2m+1 > s2n. Take k > m, n. It

follows from the laim that

s2k+1 ≥ s2m+1 > s2n ≥ s2k.

This gives s2k+1 = s2k − a2k+1 > s2k, a ontradition. Therefore we onlude

that s2n ≥ s2m+1 for all n,m ≥ 0.
The sequene (s2n)n≥0 is monotoni dereasing and is bounded below by all

the s2n+1 so onverges to a limt A, while similarly (s2n+1)n≥0 is a monotoni

inreasing sequene bounded above by all the s2n (and so by their limit A) and
so onverges to a limit B; it follows that B ≤ A. We omplete the proof by

showing that A = B.
Suppose to the ontrary that B < A so we may write A = B + ε for some

ε > 0. Sine an → 0 it follows that the same is true of both of the subsequenes

(a2n)n≥0 and (a2n+1)n≥0. Take N suh that for any n ≥ N , an <
ε
2 . Then

(s2n ≥ A) ⇒ (s2n+1 = s2n − a2n+2 ≥ A− ε

2
= B +

ε

2
);

howeverB is the least upper bound of the sequene (s2n+1)n≥0, and in partiular

B is an upper bound, and that is ontradited by s2n+1 > B. Therefore A = B
is the limit of the sequene (sn)n≥0.

5. For p > 0, the funtion f(x) = x−p
is monotonially dereasing for x ≥ 1,

and so we have

I =

ˆ ∞

1

dx

xp
>

∞
∑

n=2

1

np
.

For p > 1 we have

I =
x1−p

1− p
|∞1 = 0− 1

1− p
=

1

p− 1

13



so that ∞
∑

n=1

1

np
< 1 +

1

p− 1
=

p

p− 1
.

Sine the sequene of partial sums of this series is monotoni inreasing and

bounded above, the series onverges.

On the other hand if p < 1 we may observe that:

N
∑

n=1

1

np
>

ˆ N

1

dx

xp
=
x1−p

1− p
|N1 =

N1−p − 1

1− p

and sine the latter expression approahes in�nity as N → ∞, it follows that

∑∞
n=1

1
np diverges if p < 1. If p = 1 we obtain

N
∑

n=1

1

n
>

ˆ N

1

dx

x
= lnx|N1 = lnN → ∞.

Therefore

∑∞
n=1

1
np onverges if and only if p > 1.

6. Suppose that r < 1. Let 2ε = 1− r > 0. Note that s = r+ ε = 1− ε < 1.
There exists N suh that

−ε < |an+1

an
| − r < ε ∀n ≥ N

⇒ 0 < |an+1| < s|an|
⇒ |an+1| < sn−N |aN | ∀n ≥ N.

Let sN denote

∑N
n=0 |an|. Then

∞
∑

n=0

|an| = sN +

∞
∑

n=N+1

|an| ≤ sN + |aN |
∞
∑

n=N+1

sn−N

= sN + |aN |
∞
∑

n=1

sn = sN + |aN | s

1− s
.

Therefore sine the partial sums sn of the series (|an|)n≥1 are monotonially

inreasing and bounded above, it follows that the series

∑∞
n=0 an is absolutely

onvergent, and so onvergent.

Next suppose that r > 1. Take ε > 0 suh that s = r − ε > 1. Then

take N suh that for all n ≥ N , |an+1

an
| > s. Hene we have |an+m| > sm|an|.

In partiular limn→∞ an 6= 0, whene it follows by Question 1 that the series

∑∞
n=0 an is divergent.

7. ex ∼ ∑∞
n=0

xn

n! . In this ase

|an+1

an
| = | n!xn+1

(n+ 1)!xn
| = |x|

n+ 1
→ 0 ∀x ∈ R

14



and so by the Ratio test, the series onverges for all x.

sinx ∼ ∑∞
n=0

(−1)nx2n+1

(2n+1)! and cosx ∼ ∑∞
n=0

(−1)nx2n

(2n)! . The test ratios are

respetively:

| (−1)n+1(2n+ 1)!x2(n+1)+1

(−1)n(2(n+ 1) + 1)!x2n+1
| = | x2

(2n+ 2)(2n+ 3)| | → 0 ∀x ∈ R

| (−1)n+1(2n)!x2(n+1)

(−1)n(2(n+ 1))!x2n
| = | x2

(2n+ 1)(2n+ 2)| | → 0 ∀x ∈ R

and so, by the Ratio test, both these series also overge for all real x.

8. Note that sN =
∑N

n=1 an is a stritly monotoni inreasing sequene in

N and that sN ≤ ∑N
n=1 bn ≤ B =

∑∞
n=1 bn. Therefore S =

∑∞
n=1 an onverges

(to a limit no more than B). On the other hand if the series S is divergent then

so is

∑∞
n=1 bn, for if this series were onvergent then so would S be onvergent

(by the previous argument).

9.

(i) |an+1

an
| = | 2

3(n+1)

(n+ 1)!
· n!
23n

| = | 23

n+ 1
| → 0 so series onverges;

(ii) |an+1

an
| = | 2(n+1)2

(2(n+ 1))!
· (2n)!
2n2 | = | 22n+1

(2n+ 2)(2n+ 1)
| → ∞ so series diverges;

(iii) The Ratio test limit here is 1 so that test is inonlusive. However, for

n ≥ 3, lnn
n > 1

n and sine

∑∞
n=3

1
n diverges then so does

∑∞
n=1

lnn
n .

10.

(i) lim
n→∞

n
√

|an| = lim
n→∞

(1 + n2)2

1− 2n2
= ∞, so series diverges;

(ii) lim
n→∞

n
√

|an| = lim
n→∞

n

53+
2
n

= ∞, so series diverges;

(iii) lim
n→∞

n
√

|an| = lim
n→∞

( n

1 + n
)n = lim

n→∞

(

1− 1

1 + n

)n
= e−1 < 1, so series onverges.

Problem Set 5

1. From Question 3 of Set 1, we prove this by showing that one of these

series is bounded above if and only if the other is as well. Let sn and tn denote

the respetive sequenes of partial sums of the two series:

sn = a1 + a2 + · · ·+ an

15



tk = a1 + 2a2 + · · ·+ 2ka2k .

Sine the an are dereasing, it follows that for n ≤ 2k,

sn ≤ a1+(a2+a3)+· · ·+(a2k−1+a2k−1+1+· · ·+a2k−1)+(a2k+a2k+1+· · ·+a2k+1−1)

≤ a1 + 2a2 + · · ·+ 2k−1a2k−1 + 2ka2k = tk,

so that sn ≤ tk for n ≤ 2k. On the other hand, if n ≥ 2k,

sn ≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1 + a2k−1+1 + · · ·+ a2k)

≥ a1
2

+ a2 + 2a4 + · · ·+ 2k−1a2k =
tk
2

so that 2sn ≥ tk. It follows that the sequenes (sn)n≥1 and (tn)n≥1 are both

bounded above, or both not bounded above, and therefore the orresponding

series,

∑∞
n=1 an and

∑∞
n=1 2

na2n both onverge or both diverge.

2. Let an = n−p (p 6= 1). Then the sequene onsists of positive monotoni-

ally dereasing terms and so we may apply Question 1. Applying the ratio test

to (2na2n)n≥1 gives in this ase

2n+1(2n+1)−p

2n(2n)−p
=

2 · 2np
2(n+1)p

=
2

2p
=

1

2p−1
;

now if p > 1 then p− 1 > 0 and the ratio is less than 1, telling us that the series
in question both onverge. On the other hand if p < 1 then p − 1 < 0 and the

ratio exeeds 1, indiative of divergent series.

3. Here we have an = 1
n(logn)p , whih is a monotoni dereasing sequene of

positive terms and so we may apply Cauhy ondensation and instead look at

the sum of the ondensed series:

∞
∑

n=2

2n

2n(log(2n))p
=

∞
∑

n=2

1

np(log 2)p
=

1

(log 2)p

∞
∑

n=2

1

np
;

and by Question 2, we know this series onverges if and only if p > 1.

4. Sine the terms of the series are positive and monotonially dereasing

we may apply the integral test to

∑∞
n=2

1
n logn(log(logn)) and so onsider the

orresponding integral:

I =

ˆ ∞

2

dx

x log x(log(log x))
.

Put u = log(log x). Then du = dx
x log x so we get:

I =

ˆ ∞

log(log 2)

du

u
= [log u]∞log(log 2),

16



whih is in�nite, and so the series in question also diverges.

5(a) Suppose to the ontrary that f were not ontinuous at u, whene there
exists some ε > 0 suh that for any δ > 0 there exists x ∈ S suh that |x−u| < δ
but |f(x)−f(u)| > ε. In partiular we may hoose un ∈ S suh that |xn−u| < 1

n
but |f(un) − f(u)| > ε. But then (un)n≥1 is a sequene in S onverging to u
but for all n we have |f(un) − f(u)| > ε. Hene if f is not ontinuous at u
there exists a sequene in S that onverges to u but the sequene of images,

f(un), does not onverge to f(u). By the ontrapositive, we onlude that if

every sequene in S that onverges to u has its image sequene onverging to

f(u), then f is ontinuous at u.
(b) The onverse is also true for suppose that f is ontinuous at u and let

(un)n≥1 be a sequene in S that onverges to u. Let ε > 0. Sine f is ontinuous

at u, there exists δ > 0 suh that if x ∈ S with |x−u| < δ then |f(x)−f(u)| < ε.
Then there exists N suh that for all n ≥ N we have |un − u| < δ, whene
|f(un)− f(u)| < ε, thereby showing that (f(un))n≥1 → f(u), as required.

6(a) We note that

n

(n+ 1)!
=

(n+ 1)− 1

(n+ 1)!
=

1

n!
− 1

(n+ 1)!
, hene

N
∑

n=1

n

(n+ 1)!
=

N
∑

n=1

( 1

n!
− 1

(n+ 1)!

)

=
1

1!
− 1

(N + 1)!
= 1− 1

(N + 1)!

⇒
∞
∑

n=1

n

(n+ 1)!
= lim

N→∞
(1− 1

(N + 1)!
) = 1.

(b)

ex − 1 =
∞
∑

n=1

xn

n!
⇒ ex − 1

x
=

∞
∑

n=1

xn−1

n!
=

∞
∑

n=0

xn

(n+ 1)!

⇒ xex − ex + 1

x2
=

∞
∑

n=1

nxn−1

(n+ 1)!

⇒ 1− ex + xex

x
=

∞
∑

n=1

nxn

(n+ 1)!
.

We now put x = 1 and so obtain the same result:

∞
∑

n=1

n

(n+ 1)!
=

1− e+ e

1
= 1.

7(a) Di�erentiating f(x) = (1 + x)α gives f ′(x) = α(1 + x)α−1
, whene

(1 + x)f ′(x) = α(1 + x)α = αf(x).

17



(b) Write f(x) =
∑∞

n=0 anx
n
so that our equation takes on the form:

(1 + x)f ′(x) = (1 + x)
∞
∑

n=1

nanx
n−1 = (1 + x)

∞
∑

n=0

(n+ 1)an+1x
n = α

∞
∑

n=0

anx
n

⇒ (n+ 1)an+1 + nan = αan ∀n ≥ 0

⇒ an+1 =
α− n

n+ 1
an =

(α− n)(α− n+ 1)

(n+ 1)n
an−1 =

(α− n)(α − n+ 1)(α− n+ 2)

(n+ 1)n(n− 1)
an−2 =

· · · = (α− n)(α− n+ 1) · · · (α− 1)α

(n+ 1)n(n− 1) · · · 2 · 1 a0

and sine a0 = f(0) = 1 we onlude, upon replaing n+1 by n in the preeding

alulation, that

an =
(α− n+ 1)(α− n+ 2) · · ·α

n!
∀n ≥ 1.

Note that a0 = 1, a1 = α, a2 = (α−1)α
2 , · · ·.

8. We apply the ratio test:

|an+1x
n+1

anxn
| = | (α− n)(α− n+ 1) · · ·α

(n+ 1)!
· n!x

(α− n+ 1)(α− n+ 2) · · ·α | =
|α− n||x|
n+ 1

→ |x|;

hene the series onverges if |x| > 1 and diverges if |x| < 1.

9. Sine

φ(x) =
f(x)

(1 + x)α
⇒ φ′(x) =

f ′(x)(1 + x)α − α(1 + x)α−1f(x)

(1 + x)2α
.

However this numerator an be worked using the equation (1+x)f ′(x)−αf(x) =
0 as follows:

= (1+x)f ′(x)(1+x)α−1−αf(x)(1+x)α−1 = ((1+x)f ′(x)−αf(x))(1+x)α−1 = 0.

Hene φ(x) is onstant, and the value of that onstant is

φ(1) =
a0

(1 + 0)α
=

1

1
= 1;

∴ (1 + x)α =

∞
∑

n=0

(

α

n

)

xn ∀ − 1 < x < 1.

10. We have

√
1 + x = (1+ x)

1
2
so that the general oe�ient in the expan-

sion takes on the form:

(1
2

n

)

=
(12 − n+ 1)(12 − n+ 2) · · · 12

n!
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∴

√
1 + x = 1 +

1

2
x− 1

2 · 4x
2 +

1 · 3
2 · 4 · 6x

3 − 1 · 3 · 5
2 · 4 · 6 · 8x

4 + · · ·

Putting x = 1 gives:

√
2 ≈ 1 +

1

2
− 1

8
+

1

16
− 5

128
= 1

64− 16 + 8− 5

128
= 1

51

128
= 1 · 40 (2 d.p).

Problem Set 6

1. Put 2ε = f(a) > 0. Then sine limx→a+ f(x) = f(a), there exists δ > 0
suh that if 0 < x− a < δ then |f(x)− f(a)| < ε, so that

−ε < f(x)− f(a) < ε

⇒ ε = f(a)− ε < f(x) < f(a) + ε;

in partiular f(x) > 0 for all x suh that 0 ≤ x− a < δ.
Comment Similarly if f(a) < 0 we an �nd δ > 0 suh that f(x) < 0 for

all 0 ≤ x − a < δ. Moreover, it is lear that the same holds in eah ase for a

suitably hosen losed interval [0, δ].

2. Let A = {x : a ≤ x ≤ b, f(y) < 0 ∀ a ≤ y ≤ x}. Sine f(a) < 0 we have

that A 6= ∅. Sine f(b) > 0 and f(x) is ontinuous, there exists a δ > 0 suh

that f(x) > 0 for all x ∈ [b− δ, b]. Hene there exists a least upper bound α to

A and a ≤ α < b. We show that f(α) = 0.
Suppose to the ontrary that f(α) < 0. There there exists δ > 0 suh that

for all x ∈ (α − δ, α + δ), f(x) < 0. Now there is some x0 ∈ A that satis�es

α− δ < x0 < α beause otherwise α would not be the least upper bound of A.
This means that f is negative on [a, x0]. But then for any x1 ∈ [α, α + δ) then
f is negative on [x0, x1]. Then f is negative on [a, x1]. This gives x1 ∈ A and

α < x1, ondtraditing that α is an upper bound of A. Hene the assumption

that f(α) < 0 must be false.

On the other hand, suppose that f(α) > 0. Then, again by ontinuity, there

exists δ > 0 suh that for all x ∈ [α−δ, α] we have f(x) > 0. But then α−δ is a
smaller upper bound for A than α, again a ontradition. Therefore f(α) = 0.
Sine f(a), f(b) are both non-zero we onlude that a < α < b.

Comment By applying this argument to −f , it follows that the onlusion

of the IVF also holds if f(a) > 0 and f(b) < 0.

3(i) Let f(x) = x − cosx. Then f(0) = 0 − 1 = −1 < 0; f(π2 ) =
π
2 − 0 =

π
2 > 0 and sine f is ontinuous, by the Intermediate value theorem, there exists

x ∈ (0, π2 ) suh that f(x) = x− cosx = 0, whih is to say that x = cosx.
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(ii) Let f(x) = x − 1 − sinx. Then f(0) = 0 − 1 − 0 = −1 < 0 while

f(2) = 2 − 1 − sin 2 = 1 − sin 2 > 0. Again by the IVT it follows that there

exists x ∈ (0, 2) suh that f(x) = x− 1− sinx = 0, so that sinx = x− 1.
(iii) Without loss we may take the leading oe�ient of p(x) to be 1, so that

p(x) = a0 + a1x + · · · + an−1x
n−1 + xn, with n odd. Then for x 6= 0 we may

write:

p(x) = xn(
a0
xn

+
a1
xn−1

+ · · ·+ an−1

x

)

+ xn.

By the IVF it is enough to show that p(x) takes on values of both signs. Let

A be the maximum of the numbers |a0|, |a1|, · · · , |an−1|, 1. Then for any x suh

that |x| ≥ 2(n− 1)A we have by the Triangle inequality that

| a0
xn

+
a1
xn−1

+ · · ·+ an−1

x
| ≤ A

2(n− 1)A
+

A

2(n− 1)A
+ · · ·+ A

2(n− 1)A
=

1

2
.

It follows that for any x suh that x ≥ 2(n− 1)A we have p(x) ≥ xn − 1
2x

n =
1
2x

n
and if x < 2(n − 1)A then p(x) ≤ xn + 1

2x
n
; in partiular, p(x) > 0 if

x > 2(n− 1)A and, sine n is odd, p(x) < 0 if x < −2(n− 1)A. It now follows

the the IVT that p(x) has a real root.

4(a) Let a ∈ f−1(U) so that f(a) = u ∈ U . Sine U is open there exists

ε > 0 suh that if |y − u| < ε then y ∈ U . Now sine f(x) is ontinuous there
exists δ > 0 suh that |x − a| < δ implies that |f(x) − f(a)| = |f(x) − u| < ε
so that f(x) ∈ U and x ∈ f−1(U). This shows that the sphere of radius δ > 0
entred at x lies in f−1(U) and sine x was an arbitrary member of f−1(U) it
follows that f−1(U) is open.

Conversely, suppose that for every open set U ⊆ Rm,f−1(U) is open. Let

ε > 0, let a ∈ Rn
, and onsider the open sphere U of radius ε entred at f(a).

By hypothesis, f−1(U) is an open set, whih ontains a. Let δ > 0 be suh that

for the sphere V of radius δ entred at a we have V ⊆ f−1(U). Then f(V ) ⊆ U
so that if b ∈ Rn

is suh that |b− a| < δ then |f(b)− f(a)| < ε, thereby showing
that f(x) is ontinuous at the arbitrary point a.

(b) Yes, for it is equivalent to the result of part (a). Let U ⊆ Rm
and let

U ′ = Rm \ U . Then Rn
is a disjoint union of f−1(U) and f−1(U ′). Now by

part (a) f is ontinuous if and only if f−1(U) is open for all open sets U ⊆ Rm
,

whih is equivalent to f−1(U ′) is losed for every losed set U ′ ⊆ Rm
.

5.

lim
h→0

((x+ h)2 − x2) = lim
h→0

2hx = 0;

and so f(x) = x2 is ontinuous for all x ∈ R.

However, take the open interval I = (−1, 1). Then f(I) = [0, 1), whih is

not open (as it ontains the boundary point 0). Therefore a ontinuous map

does not neessarily map open sets to open sets.

Comment An even simpler example of this kind is a onstant mapping, whih

maps every set, open or otherwise, to the a one-point losed set. Similarly the
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sine funtion maps any subset of the real line that ontains an interval of length

2π onto the losed interval [−1, 1]. It is possible to onstrut some (rather

strange) mappings on the real line that do map open sets to open sets yet are

not themselves ontinuous. A ontinuous mapping that does map open sets to

open sets is alled an open mapping.

6. Setting ε = 1 we may take δ > 0 suh that for all x ∈ (a − δ, a + δ)
|f(x)− f(a)| < 1. Therefore for all x in this interval we have

−1 < f(x)− f(a) < 1

⇒ −1 + f(a) < f(x) < f(a) + 1

whih gives lower and upper bounds for f(x) on (a− δ, a+ aδ).

7. Let A = {x : a ≤ x ≤ b and f is bounded on [a, x]}. Then a ∈ A and A is

bounded above by b. Let α be the least upper bound of A. Suppose that α < b.
Then by Question 6, we have that f is bounded on some interval (a− δ, a+ δ)
for some δ > 0 (where, without loss, we may take δ su�iently small so that

a+δ ≤ b) and f is bounded on [a, α− δ
2 ] (for otherwise α− δ

2 would be a smaller

upper bound for A), whene it follows that f is bounded on the union of these

two intervals, whih is [a, α + δ). However this ontradits that α is an upper

bound for A. Therefore α = b. Take δ < b−a
2 . It now follows that f is bounded

on [a, b− δ].
By the same argument but with the interval [a, x) replaed by (x, b] in A, we

onlude that f is bounded on [a+δ, b] and so f is bounded on [a+δ, b]∪[a, b−δ] =
[a, b].

8. By Question 7 we have that f(x) is bounded on [a, b]. Let M be the

least upper bound of f([a, b]). For any n ∈ Z+
there exists xn ∈ [a, b] suh that

f(xn) > M − 1
n . Consider the sequene (xn)n≥1. Sine [a, b] is bounded, this

sequene has a onvergent subsequene (xni
)i≥1 with limit x say. Sine [a, b] is

losed, this limit x is a member of [a, b]. We laim that f(x) = M . To see this

we note that

1
ni

≤ 1
i → 0 as i→ ∞.

Suppose that, ontrary to our laim, that f(x) = M − ε for some ε > 0.
Choose i suh that

1
ni
< ε

2 and, sine f is ontinuous, we may simultaneously

take i suh that |f(x)− f(xni
)| < ε

2 . But then we infer that

−ε
2
< f(x)− f(xni

) <
ε

2

⇒ f(x) > f(xni
)− ε

2
> M − 1

ni
− ε

2
> M − ε

2
− ε

2
=M − ε,

a ontradition. Therefore f(x) = M and so that f(x) attains a maximum on

[a, b].

9. Note that −f(x) is ontinuous on [a, b] so that by what we have just

proved, −f(x) attains its maximum, m say at x ∈ [a, b] say. Then f(x) = −m
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and we laim this is the minimum value for f on [a, b] for if not, there exists some

y ∈ [a, b] suh that f(y) = p < −m. But then −f(y) = −p > m, ontraditing

that m is the maximum value for −f on [a, b].
Comment The theorem represented by the pair of results of Questions 8 and

9 is alled the Extremum theorem, in that it says that a ontinuous funtion on

a bounded losed interval has extreme values (maxima and mininma).

10. Sine we are assuming that f(x) 6= M for all x ∈ [a, b], it follows that
g(x) is ontinous on [a, b] and so bounded (by Question 7). On the other hand

sine M is the least upper bound of the set of values f(x) (a ≤ x ≤ b) it follows
that for any ε > 0 there exists x ∈ [a, b] suh that 0 ≤M − f(x) ≤ ε. But then
g(x) ≥ 1

ε . Sine ε an be taken to be arbitrarily small, we gain the ontradition

that g(x) is unbounded above on [a, b]. Therefore we onlude that for some

y ∈ [a, b], f(y) =M .

Problem Set 7

1. A funtion is ontinuous throughout its domain D if for any ε > 0 and

eah a ∈ D there exists δ > 0 suh that |x−a| < δ implies that |f(x)−f(a)| < ε.
The value of δ here may depend on a and there is no stipulation that there is a

single value of δ > 0 for whih this onlusion applies for all a ∈ D. However, for

uniform ontinuity we insist that there is some δ > 0 that 'works' for all a ∈ D
(although δ will still in general depend on the given value of ε > 0). For that

reason uniform ontinuity is a stronger ondition that ontinuity throughout the

domain of de�nition of the funtion. That it is indeed stritly stronger is shown

by the example of Question 2.

2. Let ε > 0 and let a ∈ (0, 1]. Take δ suh that δ < a. For |x− a| < δ then
a− x < δ so that 0 < a− δ < x and

1
x <

1
a−δ . Hene

|f(x)− f(a)| = | 1
x
− 1

a
| = |a− x

ax
| = |x− a|

ax
<

δ

ax
<

δ

a(a− δ)

Now

δ

a(a− δ)
< ε⇔ δ < a2ε− δaε⇔ δ <

a2ε

1 + aε
.

It follows that if we take δ < a2ε then |f(x) − f(a)| < ε, as required to show

ontinuity at a. Sine a represents an arbitrary member of (0, 1], it follows that
f(x) = 1

x is ontinuous on (0, 1].
Now put ε = 1. Then for any δ > 0 we shall show that we may �nd a ∈ (0, 1]

suh that there exists x ∈ (0, 1] with |x− a| < δ but |f(x)− f(a)| > 1. We shall
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for onveniene take x < a and so we need x suh that

1

x
− 1

a
> 1 ⇔ a− x

ax
> 1 ⇔ a− x > ax⇔ x(a+ 1) > a

⇔ x >
a

a+ 1
.

Now sine 0 < a
a+1 = 1 − 1

a+1 < 1 we may take x to be any member of the

interval ( a
a+1 , a). (Note that

a
a+1 < a.) Therefore any value of x suh that

a− δ < x < a
a+1 shows that uniform ontinuity fails for ε = 1.

3. Suppose to the ontrary that f(x) were not uniformly ontinous on [a, b].
Then there would exist some ε > 0 suh that for any δ > 0 there exist x, y ∈ [a, b]
suh that |x − y| < δ but |f(x) − f(y)| > ε. Let (δn)n≥1 be any sequene of

positive numbers monotonially dereasing to 0. Then for eah δn there exists

xn, yn ∈ [a, b] suh that |xn − yn| < δn but |f(xn)− f(yn)| > ε. Now sine [a, b]
is bounded there exists a subsequene xnk

of the xn suh that xnk
approahes

some limit x and sine [a, b] is losed, x ∈ [a, b]. Sine f is ontinuous at x
there is a η > 0 suh that for all y ∈ [a, b] suh that |x − y| < η, implies

|f(x) − f(y)| < ε
2 . Now take k su�iently large so that so that |xnk

− x| < η
and |x− ynk

| < η. Then we have:

|f(xnk
)−f(ynk

)| = |f(xnk
)−f(x)+f(x)−f(ynk

)| ≤ |f(xnk
)−f(x)|+|f(x)−f(ynk

)|

<
ε

2
+
ε

2
= ε,

ontraditing our hoie of xnk
and ynk

. It follows that f is uniformly ontinuous

on [a, b].

4. We note that

|f(x)− fn(x)| =
|x|n
1− x

≤ an

1− a
∀ |x| ≤ a.

Given ε > 0, hoose N su�iently large so that

aN

1− a
< ε,

then we have the required inequality |f(x) − fn(x)| < ε for all n ≥ N and all

x ∈ S.

5(a) We have fn(x) = (n+ 1)(n + 2)x(1 − x)n n = 1, 2, · · · , whenef(0) =
f(1) = 0. For 0 ≤ x ≤ 1 we have 0 ≤ y = 1 − x ≤ 1 also and so |fn(x)| ≤ (n+

1)(n+2)yn. Now for any polynomial p(n) we have for any a > 1, limn→∞
p(n)
an =

0; here we have p(n) = (n+ 1)(n+ 2) and a = 1
y . Hene limn→∞ fn(x) = 0, so

that fn → 0 pointwise.
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(b)

ˆ 1

0

fn(x) dx = (n+ 1)(n+ 2)

ˆ 1

0

x(1 − x)n dx.

Let Fn =
´ 1

0 x(1 − x)n dx. Integration by parts gives:

Fn = [−x(1− x)n+1

n+ 1
]10 +

ˆ 1

0

(1− x)n+1

n+ 1
dx = 0− 1

(n+ 1)(n+ 2)
[(1− x)n+2]10

=
1

(n+ 1)(n+ 2)
.

It follows that

lim
n→∞

ˆ 1

0

fn(x) dx = lim
n→∞

1 = 1.

On the other hand

ˆ 1

0

lim
n→∞

fn(x) dx =

ˆ 1

0

0 dx = 0.

We onlude that

lim
n→∞

ˆ 1

0

fn(x) dx = 1 6= 0 =

ˆ 1

0

lim
n→∞

fn(x) dx.

() Suppose to the ontrary that fn → 0 uniformly. Put ε = 1. Then there

exists N suh that for all x, y ∈ [0, 1] for any n ≥ N , we have |fn(x)−fn(y)| < 1.
If partiular, if we put y = 0 we have 0 ≤ fn(x) < 1. However, if we take n ≥ N
and also put x = 1

n we then have

fn(
1

n
) =

(n+ 1)(n+ 2)(1− 1
n )

n

n
= (1 +

1

n
)(1− 1

n
)n(n+ 2);

lim
n→∞

(1 +
1

n
)(1− 1

n
)n = e−1;

in partiular, for all su�iently large n we have fn(
1
n ) >

n+2
2e and the latter

inreases without bound as n→ ∞, ontrary to our hoie of N . Hene no suh

N exists and the sequene of funtions fn does not onverge uniformly to its

pointwise limit of the zero funtion.

6(a) Let ε > 0. Then there exists N1 and N2 suh that |fn(x) − f(x)| < ε
for all n ≥ N1 and |gn(x) − g(x)| < ε for all n ≥ N2. Put N = max(N1, N2).
Then both the previous inequalities hold for all n ≥ N . Then for n ≥ N we

have:

|afn(x) + bgn(x)− (af(x) + bg(x))| = |a(fn(x)− f(x)) + b(gn(x) − g(x))|
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≤ |a||fn(x) − f(x)|+ |b||gn(x) − g(x)| ≤ |a|ε+ |b|ε = (|a|+ |b|)ε;
and sine this is a �xed multiple of ε, we may onnlude that afn+bgn → af+bg
uniformly on S.

(b) Sine |f(x)| and |g(x)| are both bounded above for all n and for all

x ∈ S, there exists a ommon positive boundM say for both. Take ε > 1 in the

de�nition of uniform onvergene, as in part (a) take N suh that for all n ≥ N
we have |fn(x) − f(x)| < 1 and |gn(x) − g(x)| < 1, from whih it follows that

|fn(x)| < M +1 and |gn(x)| < M +1. For any ε > 0 we may take N1 ≥ N suh

that for all n ≥ N1, |fn(x)− f(x)| < ε, |gn(x) − g(x)| < ε
2M+1 . Then

|fn(x)gn(x)− f(x)g(x)| = |fn(x)gn(x)− fn(x)g(x) + fn(x)g(x) − f(x)g(x)|

≤ |fn(x)(gn(x)−g(x))|+|g(x)(fn(x)−f(x)| ≤ |fn(x)||gn(x)−g(x)|+|g(x)||fn(x)−f(x)|

< (M + 1)
ε

2M + 1
+M

ε

2M + 1
= ε.

This establishes that fngn → fg uniformly on S.

7(a) Sine |f(x)| − f(x) ≥ 0 it follows that

ˆ b

a

(|f(x)| − f(x)|) dx ≥ 0

⇒
ˆ b

a

|f(x)| dx ≥
ˆ b

a

f(x) dx.

Replaing f(x) by −f(x) and noting that | − f(x)| = |f(x)| we also see that

´ b

a |f(x)| dx ≥
´ b

a −f(x) dx. We therefore onlude that:

ˆ b

a

|f(x)| dx ≥ |
ˆ b

a

f(x) dx|.

(b) Take n ≥ N , where N is hosen so that for all suh n, |fn(x) − f(x)| <
ε

b−a . Then we have from part (a) that:

|
ˆ b

a

fn(x) dx −
ˆ b

a

f(x) dx| = |
ˆ b

a

(fn(x)− f(x)) dx|

≤
ˆ b

a

|fn(x)− f(x)| dx ≤
ˆ b

a

ε

b − a
dx = (b− a)

ε

b− a
= ε.

Sine ε > 0 was arbitrary, it follows that

lim
n→∞

|
ˆ b

a

fn(x) −
ˆ b

a

f(x) dx| = 0

⇔ lim
n→∞

ˆ b

a

fn(x) dx =

ˆ b

a

lim
n→∞

fn(x) dx.
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8. Let sn(x) denote
∑n

k=0 uk(x). Then by de�nition,
∑∞

k=0 un(x) = limn→∞ sn(x).
We may write this as limn→∞ sn(x) = s(x) in whih ase to say that (sn(x))n≥0

onverges uniformly on S means that for any ε > 0 there exists N suh that for

all n ≥ N,

|s(x)− sn(x)| = |
∞
∑

k=n+1

uk(x)| < ε ∀x ∈ S.

If this is the ase then by Question 5 we have:

lim
n→∞

ˆ b

a

n
∑

k=0

uk(x) dx =

ˆ b

a

lim
n→∞

n
∑

k=0

uk(x) dx (9)

Now, by the linearity of the integral we have:

ˆ b

a

n
∑

k=0

uk(x) dx =

n
∑

k=0

ˆ b

a

uk(x) dx

⇒ lim
n→∞

ˆ b

a

n
∑

k=0

uk(x) dx = lim
n→∞

n
∑

k=0

ˆ b

a

uk(x) dx =

∞
∑

k=0

ˆ b

a

uk(x) dx.

Hene (11) beomes the required equation:

∞
∑

k=0

ˆ b

a

uk(x) dx =

ˆ b

a

∞
∑

k=0

uk(x) dx.

9. By applying Question 7(b) we may hange the order of the limiting

operations and then by the Fundamental theorem of alulus we obtain:

ˆ x

a

g(t) dt =

ˆ x

a

lim
n→∞

f ′
n(x) dx = lim

n→∞

ˆ x

a

f ′
n(t) dt = lim

n→∞
[fn(t)]

t=x
a

= lim
n→∞

[fn(x)− fn(a)] = f(x)− f(a)

⇒ f ′(x) = g(x) = lim
n→∞

f ′
n(x) ∀x ∈ [a, b].

10. This is a speial ase of the result of Question 9 where we take fn(x) =
∑n

k=0 uk(x).

Problem Set 8

1. The sequene of funtions under onsideration here is the sequene of

partial sums sn(x) =
∑n

k=0 uk(x). For any x ∈ S we have:

∞
∑

k=0

|uk(x)| ≤
∞
∑

k=0

vk <∞.
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Hene the series is absolutely onvergent, and so the series

∑∞
k=0 uk(x) onverges

pointwise to some limiting funtion u(x) for x ∈ S. What is more, given any

ε > 0 we may take N suh that for all n ≥ N :

∞
∑

k=n+1

vk < ε.

Hene we have

|u(x)− sn(x)| = |
∞
∑

k=n+1

uk(x)| ≤
∞
∑

k=n+1

|uk(x)| ≤
∞
∑

k=n+1

vk < ε,

thus showing that the partial sums sn(x) onverge uniformly to the limiting

sum u(x) on S.

2(a) Applying the ratio test:

|uk+1

uk
| = a2(k+1)+1k!

a2k+1(k + 1)!
=

a2

k + 1
→ 0 as k → ∞,

so the series

∑∞
k=0

a2k+1

k! onverges.

(b) Putting x = −t2 in the exponential series (whih onverges for all values

of x) we have

e−t2 =
∞
∑

k=0

(−1)kt2k

k!
.

Hene

ˆ x

0

e−t2 dt =

ˆ x

0

∞
∑

k=0

(−1)kt2k

k!
dt.

If we interhange the taking of the two limits on the right hand side we are led

to required onlusion:

=

∞
∑

k=0

(−1)k

k!

ˆ x

0

t2k dt =

∞
∑

k=0

(−1)k

(2k + 1)k!
[t2k+1]x0

=

∞
∑

k=0

(−1)kx2k+1

(2k + 1)k!
.

The exhange of the order of summation and integration is justi�ed using the

result of Question 1 providing we show that the series is uniformly onvergent,

and we do this using the Weierstrasss M-test as follows. Here we have for any

x suh that |x| ≤ a that

|uk(x)| =
x2k+1

(2k + 1)k!
≤ a2k+1

k!
;
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if we put vk = a2k+1

k! we have that by (a) that

∑∞
k=0 vk onverges. Therefore,

by the M-test, the series

∑∞
k=0

(−1)kx2k+1

(2k+1)k! onverges uniformly on every �nite

interval of the real line. In partiular, taking a > x justi�es the exhange of

integral and summation used above.

3. Sine

∑∞
n=0 anr

n
onverges it follows that |anrn| → 0 as n → ∞ so that

the sequene |anrn| < M for some upper bound M . Then for any x suh that

|x| < |r| put |xr | = ρ < 1. Then

|anxn| = |anrn||
x

r
|n < Mρn.

Now

∑∞
n=0Mρn onverges (to the limit

M
1−ρ ) so it follows from the omparison

test that

∑∞
n=0 |anxn| onverges, whih is to say our original series onverges

absolutely for x ∈ (−r, r).

4. Certainly f(0) = a0 in all ases. Suppose that f(r) onverges for some

r 6= 0. By Question 1 we have that f(x) onverges for all x suh that |x| < |r|.
Consider the non-empty set C = {r : f(x) onverges for all x : |x| < r} . If

C has no upper bound then for any x ≥ 0 we ould hoose r > c suh that

x ∈ C. It would then follow that C = R+
and sine absolute onvergene

implies onvergene, it would follow that f(x) were de�ned for all x ∈ R. In

this ase we say that R = ∞.

Otherwise we may let R be the least upper bound of the set C. Then

R ≥ |r| > 0. Take any x0 ∈ (0, R), but suppose that x0 6∈ C. Then by de�nition

of R it follows that x0 is not an upper bound of C so there exists r ∈ C suh that

x0 < r; moreover r ≤ R as R is an upper bound of C. But then by Question 1

we have x0 ∈ C, ontraditing our hoie of x0. Hene no suh x0 exists and so

f(x) onverges for all x ∈ (0, R). If −R < x < 0 then −x ∈ C, whene it follows
that f(x) also onverges (again as asbolute onvergene implies onvergene).

Therefore f(x) onverges for all x ∈ (−R,R).
On the other hand, for any x0 suh that |x0| > R we have f(x0) does not

onverge for if f(x0) were de�ned, then by Question 1, the same would be true of

any y ∈ (R, |x0|), whereupon |x0| ∈ C, ontrary to the de�nition of R. Therefore
the series diverges for all x > R or x < −R.

5. Let

r = lim
n→∞

|an+1x
n+1

anxn
| = |x| lim

n→∞
|an+1

an
|.

By the ratio test the series f(x) onverges if 0 ≤ r < 1, whih is to say that

|x|
R < 1; that is if −R < x < R, and f(x) diverges if r > 1, whih is to say that

|x| > R. Therefore R is indeed the radius of onvergene of f(x).

6. We have from Question 2 that f(x) onverges absolutely on (−R,R) and
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so does the same on [−r, r]. Choose any number x with |x| < r. Then

|anxn| = |an||x|n < |an|rn = |anrn|.

Put Mn = |anrn| so then

∑∞
n=0Mn < ∞. We then have by the Weierstrass

M-test that f(x) onverges uniformly on [−r, r].

7. We are onsidering

f(x) =
∞
∑

n=0

an(x− a)n.

Substitute y = x − a so that we have a series entred at 0, that being g(y) =
∑∞

n=0 any
n
. By Question 6 the series is uniformly onvergent on (−r, r) for

any 0 ≤ r < R, where R is the radius of onvergene of g(y). Therefore f(x)
onverges uniformly on eah interval of the form

−r < x− a < r ⇔ −r + a < x < r + a.

8. Suppose that f(x) =
∑∞

n=0 anx
n
onverges for all 0 ≤ x < r. Fix an x0

with 0 < |x0| < r, and hoose x suh that |x| < |x0| < r. The series
∑∞

n=0 anx
n
0

onverges and therefore limn→∞ anx
n
0 = 0. We an thus �nd a number bound

M suh that |anxn0 | < M for all n. We now write

nanx
n−1 = nanx

n−1x
n
0

xn0
=
nan
x0

xn0
( x

x0

)n−1
.

Putting ρ = x
x0
< 1 we have

|nanxn−1| = |nan
x0

xn0
( x

x0

)n−1| = |nan
x0

xn0 ρ
n−1| ≤M

n

|x0|
ρn−1.

Now

∑∞
n=0 nρ

n−1
onverges by the ratio test as the assoiated quotient limit is:

lim
n→∞

| (n+ 1)ρn

nρn−1
| = lim

n→∞
(1 +

1

n
)ρ = ρ < 1.

Therefore, by the M-test, the original series onverges uniformly for all x suh

that |x| < |x0|. Sine x0 was an arbitrary number sastisfying |x0| < r, the series
onverges uniformly for |x| < R. It follows that the radius of onvergene R0

of the series of derivatives satis�es R0 > R, the radius of onvergene of our

original series. If R = ∞, then R0 = ∞.

If R0 > R we may hoose r0 > R and x suh that R < |x| < r0. Then, eval-
uated at x, the series of derivatives is absolutely onvergent, while the original

series diverges. But, then for all n suh that | xn | < 1 we have:

|anxn| = |nanxn−1||x
n
| ≤ |nanxn−1|.
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This means that the original series onverges upon substituting this value x,
whih is false. Therefore we may onlude that R = R0, as required.

Comment From whih it follows that a series that results by term-by-term

integration also has the same radius of onvergene as the original series.

9(a)

1

1 + x
=

∞
∑

n=0

(−1)nxn, ∀ |x| < 1.

Integrating both sides now gives

ˆ

dx

1 + x
=

∞
∑

n=0

ˆ

(−1)nxn dx

⇒ log(1+x) =

∞
∑

n=0

(−1)n
xn+1

n+ 1
=

∞
∑

n=1

(−1)n+1x
n

n
= x−x

2

2
+
x3

3
−x

4

4
+· · · , ∀ |x| < 1;

although we should not neglet the integration onstant: however both sides

agree when x = 0 so the integration onstant is 0.
(b) Replaing x by −x (noting that |x| < 1 if and only if | − x| < 1) we

obtain:

− log(1 − x) = x+
x2

2
+
x3

3
+
x4

4
+ · · · .

10. We have

f(x) =
x2

2
− x3

3 · 2 +
x4

4 · 3 − x5

5 · 4 + · · · |x| < 1

f(x) =

∞
∑

n=2

(−1)nxn

n(n− 1)
.

We apply the ratio test:

|an+1

an
| = | (−1)n+1n(n− 1)

(−1)nn(n+ 1)
| = n− 1

n+ 1
= 1− 2

n+ 1
→ 1.

Hene the radius of onvergene of f(x) is 1. Di�erentiating term-by-term gives:

f ′(x) =
∞
∑

n=2

(−1)nxn−1

n− 1
=

∞
∑

n=1

(−1)n+1xn

n
= log(1 + x).

Hene

f(x) =

ˆ

log(1 + x) dx.
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We integrate by parts with u = log(1+x), dv = dx so that du = dx
1+x and v = x

to give

f(x) = x log(1 + x)−
ˆ

x

1 + x
dx = x log(1 + x)−

ˆ

(1− 1

1 + x
) dx

= x log(1 + x)− x+ log(1 + x) + c

⇒ f(x) = (1 + x) log(1 + x)− x+ c.

Put x = 0 we get f(0) = 0 = 0 + c so that c = 0 and indeed

f(x) = (1 + x) log(1 + x) − x

Problem Set 9

1. Sine f is ontinuous on [a, b] it takes on both a minimum m and a

maximum value M on [a, b]. If these values our at the endpoints a and b,
then sine f(a) = f(b), it follows that f is a onstant funtion and we may take

c to be any member of (a, b) in order to satisfy the onlusion of the theorem.

Otherwise one of these extrema, let us say M ours at some point c ∈ (a, b).
Then we have for h > 0:

f(c+ h)− f(c)

h
=
f(c+ h)−M

h
≤ 0

⇒ f ′(c) = lim
h→0+

f(c+ h)−M

h
≤ 0 (10)

For h < 0 the alulation is the same exept for the hange of sign in the

denominator giving:

f ′(c) = lim
h→0−

f(c+ h)−M

h
≥ 0 (11)

It follows from (12) and (13) that f ′(c) = 0, as required.
Comment Aording to Wikipedia the Indian mathematiian Bh	askara II

(1114�1185) is redited with knowledge of Rolle's theorem, although the theo-

rem is named after Mihel Rolle. Rolle's 1691 proof overed only the ase of

polynomial funtions. His proof did not use the methods of di�erential alu-

lus, whih at that point in his life he onsidered to be fallaious. The theorem

was �rst proved by Cauhy in 1823 as a orollary of a proof of the mean value

theorem.

2. Let [a, b] = [−1, 1] and f(x) = |x|. Then f(x) is ontinuous on [a, b] with
f ′(x) = −1 if x ∈ [−1, 0), f ′(x) = 1 if x ∈ (0, 1] but f ′(0) is not de�ned (as the
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orresponding limit is ±1 aording as h → 0− or h → 0+.) Therefore Rolle's

theorem does not generally hold if f(x) is not di�erentiable at some point in

(a, b).

3(a) De�ne g(x) = f(x) − rx. Put g(a) = f(a) − ra = g(b) = f(b) − rb.
Solving for r then gives r(b − a) = f(b)− f(a) so that

r =
f(b)− f(a)

b− a
.

(b) Clearly g(x) is also ontinuous on [a, b] and di�erentiable on (a, b) and
what is more, with the hoie of the onstant r as in part (a), g(x) satis�es

g(a) = g(b) and so Rolle's theorem applies to g(x). Hene there exists c ∈ (a, b)
for whih g′(c) = 0, whih is to say thatf ′(c)− r = 0 whene

f ′(c) =
f(b)− f(a)

b− a
.

4(a) We have P (a) = f(a) so the laim holds for k = 0. When di�erentiating

Pn(x) k times, (k ≤ n) all terms involving (x − a)m with m ≤ k − 1 vanish.

The kth derivative of

f(k)(a)
k! (x− a)k is the onstant term f (k)(a) while the kth

derivative of powers of x − a higher than k eah takes the value 0 under the

substitution x 7→ a. Therefore P
(k)
n (a) = f (k)(a) for all k = 0, 1, · · · , n.

(b)

F (x) = f(b)− f(x)− f ′(x)(b−x)− f (2)(x)

2!
(b−x)2 −· · ·− f (n−1)(x)

(n− 1)!
(b−x)n−1;

(12)

the ontribution to F ′(x) from the entry − f(k)(x)
k! (b − x)k is

−f
(k+1)(x)

k!
(b − x)k +

f (k)(x)

(k − 1)!
(b − x)k−1;

the seond term here anels the same term with a negative sign in the previous

entry. It follows that the full expression for F ′(x) telesopes down with the only

remaining ontribution being − f(n)(x)
(n−1)! (b − x)n−1

, as required.

()

g(x) = F (x)−
(b− x

b− a

)n

F (a);

learly g(b) = F (b) = 0 and g(a) = F (a)−F (a) = 0. Moreover, sine F (x) may

be di�erentiated on (a, b) at least one, the same is true of g(x). Hene we may

apply Rolle's theorem to g(x) to onlude that there exists c ∈ (a, b) suh that

g′(c) = 0, whih is to say that

F ′(c) + n
(b − c)n−1

(b− a)n
F (a) = 0
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⇒ − f (n)(c)

(n− 1)!
(b − c)n−1 = −n(b− c)n−1

(b− a)n
F (a)

⇒ F (a) =
f (n)(c)(b − a)n

n!

We may now put x = a in (14) to obtain Taylor's theorem:

f(b) = f(a)+f ′(a)+
f (2)(a)

2!
(b−a)2+· · ·+ f (n−1)(a)

(n− 1)!
(b−a)n−1+

f (n)(c)(b − a)n

n!
.

5. Put f(x) = cosx so that f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx.
We onsider the Taylor series for f(x) about a = 0; f(0) = 1, f ′(0) = 0,
f ′′(0) = −1. By Taylor's theorem there exist c between 0 and x suh that

cosx = f(0) + f ′(0)x+
f ′′(0)x2

2!
+
f ′′′(c)x3

3!
= 1− 1

2
x2 − (sin c)x3

6
.

For |x| ≤ π observe that (sin c)x3 ≥ 0. On the other hand if |x| ≥ π then

1− 1
2x

2 < −3 < cosx. Therefore for all values of x we have that cosx ≤ 1− 1
2x

2
.

6(a) Apply Taylor's theorem. In this ase the fat that f (k)(x0) = 0 for all

k = 1, 2, · · · , n − 1 means all the orresponding terms vanish and we are left

with

f(x) = f(x0) +
f (n)(c)

n!
(x− x0)

n
(13)

for some c in the open interval with endpoints x0 and x.
(b) Suppose now that f (n)(x0) > 0 and n is even, so that (x − x0)

n ≥ 0.
Sine f (n)(x) is ontinuous at x0 there is an open interval I ontaining x0 suh
that f (n)(x) > 0 for all x ∈ I. By Taylor's theorem, the equation (15) holds for

some c ∈ I from whih it follows that f(x) ≥ f(x0) for all x ∈ I so that x0 is a

loal minimum of f(x).

7. We take f(x) = log(1 + x), f ′(x) = (1 + x)−1, f ′′(x) = −(1 + x)−2
,

f (3)(x) = 2(1+x)−3, · · · , f (n)(x) = (−1)n−1(n−1)!(1+x)−n
. We apply Taylor's

theorem with a = 0 in whih ase f(a) = 0 and

f (n)(a)

n!
=

(−1)n−1

n
;

hene by Taylor's theorem, for any x > 0 there exists c ∈ (1, 1 + x) suh that

log(1 + x) = x− 1

2
x2 +

1

3
x3 − · · ·+ (−1)n−1

n
xn +

(−1)n

(n+ 1)(1 + c)n+1
xn+1.

The �nal remainder term is positive if n is even and negative if n is odd. There-

fore we obtain:

x− 1

2
x2+

1

3
x3−· · ·− 1

2k
x2k < log(1+x) < x− 1

2
x2+

1

3
x3−· · ·+ 1

2k + 1
x2k+1.
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8(a) We work with the ase of g(x) ≥ 0, with the g(x) ≤ 0 ase very similar.

By the Extreme value theorem there exists bounds m and M for f(x) suh that

m ≤ f(x) ≤M for all x ∈ [a, b] and f attains these bounds (whih is important

in part (b)). Hene it follows that

m

ˆ b

a

g(x) dx ≤
ˆ b

a

f(x)g(x) dx ≤M

ˆ b

a

g(x) dx. (14)

If

´ b

a g(x) dx = 0 then it follows from (16) that

´ b

a f(x)g(x) dx = 0 also and we

may take any c ∈ [a, b] to satisfy the onlusion of the theorem. Otherwise we

may divide to obtain:

m ≤
´ b

a f(x)g(x) dx
´ b

a
g(x) dx

≤M.

(b) Sine f(x) attains the bounds of m and M in the interval [a, b] it follows
by the Intemediate value theorem that there exists c ∈ [a, b] suh that f(c) =
´

b

a
f(x)g(x) dx
´

b

a
g(x) dx

, whene we gain the required onlusion that:

ˆ b

a

f(x)g(x) dx = f(c)

ˆ b

a

g(x) dx.

9(a)

A = φ(x + h)− φ(x), where φ(x) = f(x, y + k)− f(x, y).

Sine φ is di�erentiable with respet to x (keeping k and y �xed) we may invoke

the MVT on the interval [a, a+ h] to onlude that

A

(x+ h)− x
= φ′(x + θh)

⇒ A = hφ′(x + θh)

for some 0 < θ < 1.
(b) Now

φ′(x) = fx(x, y + k)− fx(x, y),

and sine the mixed partial derivative fyx exists we may apply the MVT to the

funtion de�ned by the expression on the right as a funtion of y to onlude,

again by the MVT , that

A

h
=
fx(x+ θh, y + k)− fx(x+ θh, y)

(y + k)− y
= fyx(x+ θh, y + θ′k)

⇒ A = hkfyx(x+ θh, y + θ′k), (15)

where 0 < θ, θ′ < 1.

34



() By interhanging the roles of x and y in the the previous argument,

(beginning with the funtion ψ(y) = f(x + h, y) − f(x, y)), we may likewise

onlude that

A = hkfxy(x + θ1h, y + θ′1k) (16)

Equation the two expressions for A from (17) and (18) we have

A = fyx(x+ θh, y + θ′k) = fxy(x+ θ1h, y + θ′1k);

we now let h, k → 0, whene by the assumed ontinuity of fyx and fxy at (x, y)
we onlude that fyx(x, y) = fxy(x, y).

Comment Many important theorems in alulus ome down to equality being

maintained when the order of two limiting operations is reversed. The proofs

often depend on the Mean value theorem. Equality of mixed partial derivatives

is a key example as it is assumed in many of the big theorems of Vetor analysis

suh as Green's theorem and Stokes Theorem in its various forms.

10(a)

f(x, y) = xy
x2 − y2

x2 + y2

fx(0, y) = lim
x→0

f(x, y)− f(0, y)

x
= lim

x→0
y
x2 − y2

x2 + y2
= −y;

fy(x, 0) = lim
y→0

f(x, y)− f(x, 0)

y
= lim

y→0
x
x2 − y2

x2 + y2
= x.

(b) Consequently fxy(x, 0) = 1 and fyx(0, y) = −1. In partiular fxy(0, 0) =
1 6= −1 = fyx(0, 0).

Problem Set 10

1. We have f(x) =
∑∞

n=0 anx
n
. Sine f(x) may be di�erentiated term-by-

term and the resulting series have the same radius of onvergene it follows that

the onstant term of the series expansion of f (n)(x) that results is n!an. Putting
x = 0 now gives

an =
f (n)(0)

n!
∀n = 0, 1, 2, · · · .

Comment We onlude that a smooth funtion annot have two di�erent

series expansions about the same entre. Hene if we arrive at the series in

two di�erent ways, we may use equating of oe�ients to assist in the deter-

mination of those oe�ients. This is the basis of justi�ation for �nding the

series for funtions that result from several series ombined using arithmeti

operations (linear ombinations, multipliation and division) and omposition
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(substitution). However, a smooth funtion does not neessarily have a on-

vergent Taylor series. For example, it may be shown that f (k)(0) = 0 for all

k ≥ 0 for the funtion de�ned by the rule f(x) = e−
1
x2

(with f(0) = 0). The
resulting Taylor series is shared with the zero funtion and learly onverges

to the latter and not the former. Despite being `ompletely �at' at the origin,

this funtion manages to pik itself up o� the real line away from zero. This

ba�ing behaviour is partly explained when we extend the funtion to a omplex

variable as there we �nd in�nitely many singularities in every neighbourhood of

the origin, although none on the real line itself.

2. R1(x) = f(x)−P1(x) = f(x)− f(a)− f ′(a)(x− a). We hek this agrees

with the integral, whih for n = 1 is:

I1(x) =
1

1!

ˆ x

a

(x− t)f (2)(t) dt.

Put u = x− t and dv = f (2)(t) dt,so du = −dt and v = f ′(t):

I1(x) = (x− t)f ′(t)]t=x
t=a +

ˆ x

a

f ′(t) dt

= 0− (x− a)f ′(a) + f(x)− f(a) = f(x)− f(a)− f ′(a)(x − a).

3. Now we assume indutively that for some n = k we have:

Rk(x) =
1

k!

ˆ x

a

(x− t)kf (k+1)(t) dt

and onsider

Ik+1 =
1

(k + 1)!

ˆ x

a

(x− t)k+1f (k+2)(t) dt.

Put u = (x − t)k+1
so du = −(k + 1)(x − t)k dt and dv = f (k+2)(t) so that

v = f (k+1)(t). We obtain upon integrating by parts in this way:

Ik+1 =
1

(k + 1)!
(x− t)k+1f (k+1)(t)]t=x

t=a +
k + 1

(k + 1)!

ˆ x

a

(x − t)kf (k+1)(t) dt

= 0− 1

(k + 1)!
(x− a)k+1f (k+1)(a) +

1

k!

ˆ x

a

(x− t)kf (k+1)(t) dt

= −f
(k+1)(a)

(k + 1)!
(x− a)k+1 +Rk(x)

= f(x)− Pk(x)−
f (k+1)(a)

(k + 1)!
(x− a)k+1

= f(x)− Pk+1(x) = Rk+1(x).
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4. With a = 0 the remainder term has the form:

Rn(x) =
1

n!

ˆ x

0

(x− t)nf (n+1)(t) dt;

for x > 0 we have

|Rn(x)| ≤
1

n!

ˆ x

0

(x− t)n|f (n+1)(t)| dt.

In the ase of f(x) = sinx we have that −1 ≤ f (n)(t) ≤ 1 so this simpli�es to

|Rn(x)| ≤
1

n!

ˆ x

0

(x− t)n dt =
1

n!

xn+1

(n+ 1)
=

xn+1

(n+ 1)!
.

For x < 0 we have

Rn(x) = − 1

n!

ˆ 0

x

|x− t|n|f (n+1)(t)| dt

⇒ |Rn(x)| ≤
1

n!

ˆ 0

x

(t− x)n dt =
(−x)n+1

(n+ 1)!
.

Therefore in either ase we may onlude that

|Rn(x)| ≤
|x|n+1

(n+ 1)!
→ 0 as n→ ∞.

We onlude that sinx is equal to the sum of its MLaurin series for all x ∈ R.

5(a) f(x) = x
1
3
, f ′(x) = 1

3x
− 2

3 ,f ′′(x) = − 2
9x

− 5
3
, f (3)(x) = 10

27x
− 8

3
; f(8) = 2,

f ′(8) = 1
12 , f

′′(8) = − 1
144 . Hene we obtain:

P2(x) = f(8) +
f ′(8)

1!
(x− 8) +

f ′′(8)

2!
(x− 8)2

= 2 +
1

12
(x− 8)− 1

288
(x − 8)2.

(b) Using the Lagrange form of the remainder we have that for some c with
7 ≤ c ≤ 8:

R2(7) =
f (3)(c)

3!
(7− 8)2 =

1

6
· 10
27
c−

8
3 =

5

81c
8
3

.

Sine we are looking for an (upper) bound on |R2(x)| we maximize this quantity

by taking c to be as small as possible, so we onlude that

|R2(7)| ≤
5

81 · 7 8
3

< 0 · 0004.
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6(a) By replaing x by −x2 in the exponential series we obtain:

e−x2

= 1− x2 +
x4

2!
− x6

3!
+
x8

4!
+ · · ·+ (−1)nx2n

n!
+ · · · .

(b)

ˆ 1

0

e−x2

dx ≈
ˆ 1

0

(1−x2+ x4

2
) dx = [x− x3

3
+
x5

10
]10 = 1− 1

3
+

1

10
=

23

30
≈ 0 ·766.

Sine the series has alternating signs and the terms approah 0monotonially

(for 0 < x < 1), the remainder is bounded by the magnitude of the next term

and the produt of the length of the interval of integration (1 in this ase).

Sine the next term is negative, our answer is an over-estimate and the error

in the approximation is no more than the maximum of the next term in the

integration, whih is

17

7 · 3! =
1

42
≈ 0 · 024.

7.

x2 + y2 = y, y(0) = 1

⇒ 2x+ 2yy′ = y′ ⇒ y′(1 − 2y) = 2x⇒ y′ =
2x

1− 2y

⇒ y′(0) =
0

1− 2
= 0;

y′′ =
2(1− 2y) + 2yy′

(1− 2y)2
⇒ y′′(0) =

2(1− 2) + 2(1)(0)

(1− 2)2
=

−2

(−1)2
= −2.

y(x) = y(0) + y′(0)x+
y′′(0)

2!
x2 + · · · = 1 + 0 +

−2

2
x2 + · · ·

∴ y(x) = 1− x2 + · · · .

8.

f(x, y) =

∞
∑

m,n=0

am,n(x − a)m(y − b)n

⇒ ∂fm+n

∂xm∂yn
= m!n!am,n + non-onstant terms in powers of x and y

⇒ ∂fm+n

∂mx∂ny
|(x,y)=(a,b) = m!n!am,n

∴ am,n =
1

m!n!

∂fm+n

∂mx∂ny
|(x,y)=(a,b) (17)
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9(a) Using subsript notation for partial derivatives, the linear approximat-

ing polynomial in x and y involves all terms as in (19) with m+ n ≤ 1 giving

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b),

whih is the equation of the tangent plane to the surfae z = f(x, y) at the

point (a, b).
(b) As in (a) but now we proeed with onstraint m+ n ≤ 2.

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
fxx(a, b)(x − a)2 +

1

2
fyy(a, b)(y − b)2 + fxy(a, b)(x− a)(y − b).

10. f(x, y) = (1− x− y)−1
,

∂fm+n

∂mx∂ny
(x, y) = (m+ n)!(1− x− y)−(m+n+1)

⇒ ∂fm+n

∂mx∂ny
|(x,y)=(0,0) = (m+ n)!

∴

∞
∑

m=0

∞
∑

n=0

(m+ n)!

m!n!
xmyn

represents the Taylor series expanded about the origin for (1− x− y)−1
.
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